Assembly Line Polyketide Synthases: Mechanistic Insights and Unsolved Problems
نویسندگان
چکیده
Two hallmarks of assembly line polyketide synthases have motivated an interest in these unusual multienzyme systems, their stereospecificity and their capacity for directional biosynthesis. In this review, we summarize the state of knowledge regarding the mechanistic origins of these two remarkable features, using the 6-deoxyerythronolide B synthase as a prototype. Of the 10 stereocenters in 6-deoxyerythronolide B, the stereochemistry of nine carbon atoms is directly set by ketoreductase domains, which catalyze epimerization and/or diastereospecific reduction reactions. The 10th stereocenter is established by the sequential action of three enzymatic domains. Thus, the problem has been reduced to a challenge in mainstream enzymology, where fundamental gaps remain in our understanding of the structural basis for this exquisite stereochemical control by relatively well-defined active sites. In contrast, testable mechanistic hypotheses for the phenomenon of vectorial biosynthesis are only just beginning to emerge. Starting from an elegant theoretical framework for understanding coupled vectorial processes in biology [Jencks, W. P. (1980) Adv. Enzymol. Relat. Areas Mol. Biol. 51, 75-106], we present a simple model that can explain assembly line polyketide biosynthesis as a coupled vectorial process. Our model, which highlights the important role of domain-domain interactions, not only is consistent with recent observations but also is amenable to further experimental verification and refinement. Ultimately, a definitive view of the coordinated motions within and between polyketide synthase modules will require a combination of structural, kinetic, spectroscopic, and computational tools and could be one of the most exciting frontiers in 21st Century enzymology.
منابع مشابه
Engineering the acyltransferase substrate specificity of assembly line polyketide synthases.
Polyketide natural products act as a broad range of therapeutics, including antibiotics, immunosuppressants and anti-cancer agents. This therapeutic diversity stems from the structural diversity of these small molecules, many of which are produced in an assembly line manner by modular polyketide synthases. The acyltransferase (AT) domains of these megasynthases are responsible for selection and...
متن کاملNon-linear enzymatic logic in natural product modular mega-synthases and -synthetases.
Modular polyketide synthases and nonribosomal peptide synthetases are giant multienzymes that catalyze the assembly of a wide variety of bioactive natural products including several important clinical drugs. In simple mechanical terms, these systems function as molecular assembly lines, where each domain in the multienzyme performs its task once during the assembly process. However, several pol...
متن کاملTowards Precision Engineering of Canonical Polyketide Synthase Domains: Recent Advances and Future Prospects.
Modular polyketide synthases (mPKSs) build functionalized polymeric chains, some of which have become blockbuster therapeutics. Organized into repeating clusters (modules) of independently-folding domains, these assembly-line-like megasynthases can be engineered by introducing non-native components. However, poor introduction points and incompatible domain combinations can cause both unintended...
متن کاملBiologically inspired molecular assembly lines
This paper proposes a biologically inspired ‘molecular assembly line’ — an externally programmable polymeric chain along which molecules are shuttled between chain sites along an arbitrary pathway. Our hope is to construct a scaffold that mimics biological enzymes known as polyketide synthases in their ability to physically hand-off molecules between assembly sites or domains, thereby making al...
متن کاملA Turnstile Mechanism for the Controlled Growth of Biosynthetic Intermediates on Assembly Line Polyketide Synthases
Vectorial polyketide biosynthesis on an assembly line polyketide synthase is the most distinctive property of this family of biological machines, while providing the key conceptual tool for the bioinformatic decoding of new antibiotic pathways. We now show that the action of the entire assembly line is synchronized by a previously unrecognized turnstile mechanism that prevents the ketosynthase ...
متن کامل